A Generalization of Local Symmetric and Skew-symmetric Splitting Iteration Methods for Generalized Saddle Point Problems
نویسندگان
چکیده
In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Cao, On local Hermitian and Skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009(231): 973-982] for the generalized saddle point problems to generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. Numerical experiments show the effectiveness of the iterative methods. AMS Mathematics Subject Classification : 65F10, 65F50.
منابع مشابه
On generalized preconditioned Hermitian and skew-Hermitian splitting methods for saddle point problems
In this paper, we study the iterative algorithms for saddle point problems(SPP). Bai, Golub and Pan recently studied a class of preconditioned Hermitian and skew-Hermitian splitting methods(PHSS). By further accelerating it with another parameters, using the Hermitian/skew-Hermitian splitting iteration technique we present the generalized preconditioned Hermitian and skew-Hermitian splitting me...
متن کاملA Generalization of the Hermitian and Skew-hermitian Splitting Iteration∗
This paper is concerned with a generalization of the Hermitian and skew-Hermitian (HSS) splitting iteration for solving positive definite, non-Hermitian linear systems. It is shown that the new scheme can outperform the standard HSS method in some situations and can be used as an effective preconditioner for certain linear systems in saddle point form. Numerical experiments using discretization...
متن کاملA Preconditioner for Generalized Saddle Point Problems
In this paper we consider the solution of linear systems of saddle point type by preconditioned Krylov subspace methods. A preconditioning strategy based on the symmetric/ skew-symmetric splitting of the coefficient matrix is proposed, and some useful properties of the preconditioned matrix are established. The potential of this approach is illustrated by numerical experiments with matrices fro...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملGeneralized Accelerated Hermitian and Skew-Hermitian Splitting Methods for Saddle-Point Problems
We generalize the accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration methods for large sparse saddle-point problems. These methods involve four iteration parameters whose special choices can recover the preconditioned HSS and accelerated HSS iteration methods. Also a new efficient case is introduced and we theoretically prove that this new method converges to the unique solutio...
متن کامل